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Mass on a spring map for the dripping faucet at low flow rates
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An improved discrete map for the mass-on-a-spring model for the dripping faucet is used to reproduce the
evolution of experimental dripping spectra at low flow rates. If an inverse dependence of drop mass on flow
rate is supposed, a repeated evolution from period 1 to chaos is obtained. A comparison between discrete
relaxation oscillator attractors and dissipative type-web map attractors is carried out. It is found that a dissi-
pative web map accounts for some characteristics of the relaxation oscillator map, thus giving further tools for

investigation.
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[. INTRODUCTION the understanding of drop formation and the breakup phe-

nomenon, it needs speeding up in order to predict the lengthy

In the last few years, many experiments have demondrop sequences observed in experiments.
strated that the dripping faucet is a classic physical example In this paper it will be demonstrated that improved mass-
of complex dynamical behavior. In fact, a large variety of spring models can reproduce the dynamical behavior at low
phenomena have been observed, such as period doublinfiyx, simply by varying the form of the contributions of
multiperiodicity, quasiperiodicity, crisis, Hopf bifurcation, physical parameters in different ranges of flow rate. In fact,
inverse cascade, multiple stability, hysteresis, strange attrathere is naa priori reason for parameters to be constant; they
tors, and so forth1—-14]. could depend on flow rate or on the physical conformation of

Attempts at modeling leaky tap dynamics were developedhe experimental apparatus. If we make the depletion of drop
by means of the variable mass-on-a-spring mddél and  mass depend inversely upon flow rate, we hope to obtain the
more recently through fluid dynamical computatit$,16]. structure observed experimentally. Preliminary res[2s]
Improved mass-spring moddl$7—20, achieved by chang- based on the use of the analytical approximafi2®] show
ing the mechanism at the breakup point and the reset condirdications favorable to this hypothesis.
tions, exhibit a variety of complex behavior in good agree- The spring-mass-based discrete map that was recently
ment with experiments. The importance of the critical proposed to describe the dripping faucet will be used. This
moment[21] is confirmed by the reproduction of dripping simplified model has an analogy with a web-map tjpé],
dynamics by means of discrete mapping, obtained by apwhere a modification has been made in order to introduce
proximating the solution of the equation of motion with an dissipation.
analytical function[22,23, and recently with a reversible The enormous simplifications in reducing the complex
linear function at the break poif24]. fluid system to a simple oscillator map can help in the un-

Among other features, dripping faucet experiments havelerstanding of many things, because the model parameters
exhibited a structure of period-1 and chaotic states, whichietain their physical meaning, and numerical calculations are
repeatedly appears as the flow rate increases. In the range sifaightforward(reducing the computational timeotwith-
very small flow rates each structure is composed of period-$tanding the complexity of the dynamics they produce. Thus
and period-2 motionf6,11,14. This behavior seems to be a investigations performed by means of the improved mass-
characteristic of leaking from faucets of relatively large di- spring model can cast further light on the dynamical mecha-
ameters for relatively low flow rates. nisms that rule the dripping multicomplexity.

The alternating structure of stable and chaotic states was The paper develops as follows. In Sec. Il the analytical
roughly obtained from fluid dynamical calculations. The al-map and in Sec. Il the discrete map are reviewed briefly,
ternating structure of period-1 and period-2 motion in aand their possible improvements are discussed in Sec. IV;
range of very small flow rates was not reproduced, becaussimulations at low flow rates are reported in Sec. V. In Sec.
long-term simulations take excessive computational time an®1 an analogy with a dissipative web-map type is analyzed;
hence do not yield enough “datd’16]. Unfortunately, this the conclusions are drawn in Sec. VII.
is the essential problem involved in fluid dynamical simula-
tions, so that the authors qfL6] propose a mass-spring
model constructed on the basis of fluid dynamical computa- II. THE ANALYTICAL MASS-SPRING MAP
tion, where the values of the parameters are set only after ) ) )
preliminary execution of fluid dynamical numerical calcula-  In the relaxation oscillator model a growing ma&s
tions. This adds to the usefulness of the oscillator modeldrop), suspended on a sprir{gurface tension is subjected

Thus, even if the hydrodynamic approach is a basic tool fof0 gravitational force and viscous dampifiy17-2Q. The
displacement of the center of masg a drop hanging from

an orifice can be approximately described by the dimension-
*Email address: renna@le.infn.it less equatio22,23
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X(T)={AsinQ(T)T]+B cog Q(T)T]}e  "MD observed in real systems. The map is much simpler then the
analytical map obtainable by means of Ed), which re-
+M(T)/K, (1) quires the numerical solution of a nonlinear equation. The

where Q?(T)=K/M(T), the mass is supposed to vary lin-
early with timeM(T)=m+FT, K andF are the parameters
modeling spring force and flow rate, and the viscosity pa-
rameter is normalized to 4.

The breakaway of the drop is simulated by reducing the
mass, at the critical point.=1, by a quantity proportional
to its momentum,

AM=aMV,, 2

where

where « is a parameter, whereas the residual of mawss
=M—-AM is supposed to restart with velocity, at the
point

AM Tn+1
onl—Rv, (3) 10

whereR=(3AM/47D)*? represents the radius of a spheri-
cal drop of densityD (=1). Thereforem represents the mass
of the residue after the falling of the previous spherical drop.
In Ref. [22] a mapping, that is, the series of time intervals
between each drop, was obtained by solving numerically the
equationX(T)=1 (analytical majp.

Ill. THE DISCRETE RELAXATION OSCILLATOR MAP

The analysis of Eq(l) reveals many qualitative similari-
ties with the effective behavior of drops in a real faujd@t
In Ref. [24], where investigations about such analogies
showed the relevance of the dynamics at the break-off point
a discrete map was proposed that reproduces the behavic 4

‘Equation(1) is a simplified form, because the tettdM/dt in
mass-spring equations of motion is neglected. In the complete form,
the term—T(1+F)/M appears as the argument of the exponential.

map can be written as follows:

My 1=(My+FTy)(1-aV,), (4)

Xn+1=1—

Un+1= Vi,

3a 1/3
E(mn+ FTn)Vn} ’

Vo=V(m,,vn,%,,Ty) (5

n i/ T NN
2 4 6

8 10T
n

FIG. 2. Plots of return maps &=0.37,D=1 andF=1.1,D

This term permits calculations to be performed for a wider range of=1/2 (inseb. K and« values are as in the previous figure *Idata

the flow rate.
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FIG. 3. Enlargement of a bifurcation diagram
(shown in the insetin a range of low flow rate.

Parameter values ake=18, ay=20, y=1/2.

FIG. 4. Same as in Fig. 3 but for different

values of parameter& =18, a;=8, y=1.

FIG. 5. Same as in Fig. 4 but for different

values of parameter& =10, ay=5, y=0.92.
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is the velocity of the falling drop at the break-off moment, transitions. The paramet& depends on the liquid density,
but the effect of lowerind, in the mass-spring model, is to
_K—m, enhance the rebound, so that the bifurcation diagrams show a
" F+u, © gifferent variety of structures in the ranges of allowed flow
rates. This is an example of how an external change can be
is thenth drop time interval, which is the quantity measuredrealized. Dripping spectra are calculated by increasinand
in experiments, anan,,,, andX,, 1, vy.1 are the initial the final state, at a givef value, is chosen as the initial state
mass, position, and speed of thet(1)th drop, respectively. at the next value in order to override instabilities due to

The velocity is given by coexistence of attractorshe standard initializing values we
used arexg=0.01,v,=0.001).
V(T)=[(Ac—Bd)cosQT—(Bc+Ad)sinQT]e” MM In Fig. 2 the plots of typical return maps, obtained from
CE/K @ the previous spectra, are reported. Notice the evident layered

structure of the attractors.

where ¢(T)=Q(1-FT/2M) and d(T)=(1—-FT/M)/M.
Details are reported if24]. V. SIMULATIONS AT LOW FLOW RATES

A repeating period-1 structure of the bifurcation diagram
has been found experimentally with nozzles of large diam-

There are several ways to implement the oscillator mapeter (=5 mm), for slow flow rate$6,11,14. In these cir-
In Ref.[20] the effects of changing the breakup mechanismcumstances, the volume of impelling fluid pushes the drop
were analyzed. In Ref24] it was observed that the model down weakly and the forming drop mass grows slowly. The
parameter& and « could depend on the dynamical state of restoring force and viscosity oppose the effect of gravity, so
the faucet, and in Ref23] a variation of the density param- that it takes a long time before the drop separates by its own
eterD was suggested, since it controls the rebound. We callveight. This causes any information about the previous drop
external any change that introduces some dependence ab be lost, resulting in a monotonic dependence of the drip
these parameters on the flow rétieat is, the physical control time interval and flow rate. In fact, in experiments it is found
parameter in the experimeitswhereas different changes that large drops leave the nozzle at a constant rate, resulting
that make parameters depend on dynamical quantities, su@ha period-1 attractor, or a large drop followed by a tiny one
as mass or velocity, will be calleidternal is produced. As the flow rate is increased, the drop size var-

A typical bifurcation diagram obtained with ma@) at ies slightly and the time between drops varies in a nonlinear
given values of the parameteis () is shown in Fig. 1. The manneif5]. The resulting dripping spectrum shows period-2
inset shows the plot corresponding to the spectrum With structures included between period-1 behaviors. The whole
=1/2. Notice that the system undergoes a wide variety o&volves toward a chaotic pattern.

IV. POSSIBLE IMPROVEMENTS

TuH o (0) : (b)

2% |- 0 — /
- i FIG. 7. Two return maps at low flow rates.
- L The sets of parameters a@ K=10, apy=5, y
L 3 =0.92,F=0.152,(b) K=10, ¢g=7, y=1.111,
| F=0.2.
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v visible in the larger parts of the figures, where period-1 struc-
10 tures repeatedly appear when the flow rate is varied.

Katsuyama and Nagafd 4] have observed that the ex-
perimental drip intervals decrease E&FQO'QZ, whereF,
are the flow rates at the transition points at which the
period-1 state undergoes a transformation with increasing
Moreover, they found experimentally that the volutneass
of the drip increases witk.

A linear fit on a log-log scale of time intervals of the
bifurcation diagram of Fig. 3 gives a mean slope of about 0.5
and a slope of-0.45 for the 12 transition points. The bifur-

25 5 75 0 K cation diagram of Fig. 4 has 13 transition points. On a log-
log scale a linear fit gives a straight line with slope equal to

FIG. 8. Plot of the bifurcation diagram of the dissipative web —0.73. If the first six points are utilized, the slope is equal to
map versus the control paramekeiThe dissipative parameter is set — (.92, in agreement with the experimental data. Thus, for
toh=0.1. F=0.075 the simulation does not comply entirely with real

dripping behavior at the low flow rates of Rgt4]. We have

In the attempt to describe the growing drop with Et).  made several computer simulations at different values of the
by means_of numerical calculations, we found that, when th‘barametersl(,ao). A detailed analysis shows the following
flow rate is very small, the drop oscillates weakly néar facts: with increasing flow velocity, the time intervals de-
=1 (as is expectedwith a slow velocity, so that the depleted ¢raa5e on average & ” and an almost similar decrease is
mass as given by E@2) is also small. .Th's effect is relev_ant ound for the transitional time intervals, even though these
as flow rates become very low, and_lt _affec'gs the quan_t|ty OLhow some dependence on the, &) values. Thus the hy-
erleted m?.SS. Thus_a simple (.jesclrlptlo_n with &4js-(6) is . pothesis of an inverse dependencexobn F, with an expo-
inadequate: successive numerical iterations cannot continu® : ! .

nénty~1, is correct, as many experimental facts are quali-

asm, immediately becomes greater thir{see Eq.(6)]. .
On the other hand, as remarked in the previous section, f@tlvely reproduced. Moreover, we are able also to get

is reasonable that the depleted mass can depend somehow@fpntitative agreement with experimental results. In Fig. 5
F. Thus, in order that the falling drop mass be raised at lowiNS€? @ bifurcation diagram, evaluated with the same
flow rates, we introduce in Eq2) and in Egs.(4) a depen- (K. @o) values as those of Fig. 1 and witp=0.92, is re-
dence ofa on some inverse power &, such as ported. In the enlarged plot we can observe a dynamical
evolution very similar to the experimental ones with period-1
behavior that alternates with period-2 or chaotic behavior.

Each period-1 structure occurs periodically, showing a
scaling law that has been found experimentayl4]. Fig-

In the insets of Figs. 3 and 4 plots of dripping spectra,ure §a) reports the log-log plot of transition points verdus
obtained withy=1/2 and 1, respectively, show the experi- and Fig. 6b) shows the plot of transition points agairist
mentally observed sequence: areas with stable dripping baevhereN is a transition point number. The linear fit indicated
havior alternate with areas of chaotic behavior. Details arén (a) gives

-10

a(F)=aqlF". (8)
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Toc 092 9 The web map corresponds to a periodically kicked
charged particle rotating in a magnetic field. Figure 8 shows

whence the volume of the drip increases wkhas FV  a bifurcation diagram of, againstk obtained from the map

«F9%% The fit in Fig. 8b) can be expressed as (11) with h=0.1. On increasing the control paramekethe

system follows a period doubling route to chaos. The spec-
Tn=49.5-5.5F. 10 frym produces a variety of transitions and attractors of in-
| creasing complexity. The analogy with the dripping faucet
map(4) is explained in Fig. 9 where three attractors obtained
at different values of flow rate are compared with attractors

The scaling law(9) agrees exactly with the experimenta
scaling law obtained in Ref14]. Equation(10) corresponds
to the periodicity of the period-1 structures. Analogous simu ;
lations with the scaling law9) can be obtained with differ- calculated at different value of the control parameteNo-

ent sets of parameters, for example=10, ag=7, and y tice the agr_eement b'etween the forms of correspondmg at-
—1111 tractors. This accord is not casual, because of the strict anal-

Finally, plots at lowF of two return maps show chaotic °% between the mass-on-a-spring model and classical

attractors of low dimension in accordance with the experi—kICked rotors. Ask falls, the effect of the oscillatory term in

mental onegFig. 7). Return maps obtained for higher flow EqQ. (8) is reduced. T.h's corresponds to I.OW flow rate dr!p-
ping, where the gravity force competes with surface tension,

rates will be discussed in the subsequent section. $0 that slow oscillations characterize the fluid pendent from

The present model fails to reproduce all the experiment . .
features. In effect, in the period-1 region the experiment:rhe faucet. At higher flow rates, the recoil of the stretched

time interval T, increases witl. Perhaps the reason is that iquid leading to break-off is enhanced, as the oscillations in

L ; : : the residue are not damped completely before the next drop
vibrations can affect the behavior G, in a comph_cated way ﬁietaches. These oscillations are realized in the web map at
that can also depend on the flow rate. We think the actuahigh k. The return maps at low flow rafelots 9a) and gb)]

behavior can be achieved by performinrgernal improve- hlave a behavior that is characteristic of the real leaky tap.
ments. This is suggested also from the mass-spring mode

constructed on the basis of fluid dynamical computations,
where a dependence Kfon the mass of the forming drop is
supposed 16]. Studies are in progress in order to test this We introduced an improved mass-spring map that suc-
hypothesis. ceeded also in reproducing qualitatively the dynamical be-
havior of dripping faucets observed in experiments at low
VI. A DISSIPATIVE WEB MAP flow rate. The agreement of the model with experimental
] ] ) ) data can be made quantitative. An analogy of behavior sug-
The return maps show a reduction of dimensionality algested a possible connection between the dynamics of the
low flow rates. On increasing, the complexity of their  spring-mass map and a modified web map that is related to a
structure rises, and this behavior is in agreement with experirotor subjected to a periodically pulsed field. We showed that
ments. However, when the conditidf) is used, often the  the mass-on-a-spring model remains so far an unequaled tool
form of attractors evolves toward a pronounced oscillatoryfgr the simulation and study of dripping faucet dynamics
structure, as is increased. This seems to be the effect of agwing to its very short computational time and its flexibility
dominance of the oscillatory term of velocity) in the map- iy allowing improvements, although the analysis of the sys-

ping equations(4). This observation suggests an analogytem from the point of view of fluid mechanics is always
with a web mag26], where an adjustable dissipative factor gesirable.

is introduced:

VII. CONCLUSIONS
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